Soliton - Encyclopedia of Mathematics (2024)


A solution of a non-linear evolution equation which at every moment of time is localized in a bounded domain of space, such that the size of the domain remains bounded in time while the movement of the centre of the domain can be interpreted as the movement of a particle. The soliton solution of the Korteweg–de Vries equation

$$ u _ {t} + u u _ {x} + u _ {xxx} = 0$$

given by

$$ u _ {s} ( x , t ) = \frac{3 v }{\cosh ^ {2} \frac{1}{2} [ v ^ {1/2} ( x - v t - x _ {0} ) ] }$$

describes such a solitary wave, and is uniquely determined by two parameters: the velocity $ v > 0 $and the position of the maximum at a fixed moment in time $ t = 0 $, $ x = x _ {0} $.

This equation also has $ n $-soliton solutions, which for large $ t $($ t \rightarrow \pm \infty $) can be written approximately as the sum of $ n $terms $ u _ {s, i } ( x ,t ) $, each of which is characterized by its velocity $ v _ {i} $and the position of its centre $ x _ {0i} ^ \pm $. For an $ n $-soliton solution, the set of velocities before collision $ ( t \rightarrow - \infty ) $and after collision $ ( t \rightarrow + \infty ) $remains the same; there arise only shifts of the centres of soliton solutions $ x _ {0i} ^ {+} \neq x _ {0i} ^ {-} $. Many non-linear evolution equations in two independent variables have been found which possess solutions with the above properties. Thus, the soliton solution of the non-linear Schrödinger equation

$$ i \psi _ {t} = - \psi _ {xx} - | \psi | ^ {2} \psi ,\ \ \psi \in \mathbf C ,$$

is uniquely determined by four parameters, and that of the sine-Gordon equation

$$ \phi _ {tt} - \phi _ {xx} + \sin \phi = 0$$

by two parameters $ v $, $ x _ {0} $:

$$ \phi _ {s} = 4 { \mathop{\rm Arc} \mathop{\rm tan} } \ \mathop{\rm exp} \pm \frac{( x - v t - x _ {0} ) }{\sqrt {1 - v ^ {2} } } ,$$

and there is a double soliton (breather) which is defined by four parameters.

There is an analogous situation for the Boussinesq equation

$$ \phi _ {xx} - \phi _ {tt} + ( \phi ^ {2} ) _ {xx} + \phi _ {xxxx} = 0 ,$$

the Hirota equation

$$ \phi _ {t} + i 3 \alpha | \phi | ^ {2} \phi _ {x} + \beta \phi _ {xx} + i \sigma \phi _ {xxx} +\delta | \phi | ^ {2} \phi = 0 ,\ \ \alpha \beta = \sigma \delta ,$$

and others. There are also physically interesting equations with a larger number of independent variables that have soliton solutions with the above properties. For example, a soliton of the Kadomtsev–Petviashvili equation (two space variables)

$$ ( u _ {t} + 6 u u _ {x} + u _ {xxx} ) _ {x} = u _ {yy} ,$$

localized in $ x $and $ y $, is equal to

$$ u ( x , y , t ) = 2\frac{\partial ^ {2} }{\partial x ^ {2} } \mathop{\rm log} \left ( \frac{1}{\nu ^ {2} } +| x + i \nu y - 3 \nu ^ {2} t | ^ {2} \right ) ,\ \ \nu \in \mathbf R .$$

In physics literature, the term "soliton" means a particle-like solution of a non-linear equation of classical field theory for which energy and momentum densities remain localized in a neighbourhood of some point of space at any moment in time. Sometimes, localization can occur near lines and surfaces. These localized solutions are also called kinks or monopoles. The search for solutions of this type involves topological considerations. In particular, for several models one can successfully construct a current $ J _ \mu ( x) $whose divergence is equal to zero independently of the equations of motion, and the corresponding integral of motion (the topological charge) $ Q = \int J _ {0} ( x) d ^ {3} x $gives a lower bound for the energy functional.

References

[1] A.C. Scott, F.Y.F. Chu, D.W. Mclaughlin, "The soliton: a new concept in applied science" Proc. IEEE , 61 (1973) pp. 1443–1483
[2] V.I. Karpman, "Non-linear waves in dispersing media" , Moscow (1973) (In Russian)
[3] B.A. Dubrovin, V.B. Matveev, S.P. Novikov, "Non-linear equations of Korteweg–de Vries type, finite-zone linear operators, and abelian varieties" Russian Math. Surveys , 31: 1 (1976) pp. 59–146 Uspekhi Mat. Nauk , 31 (1976) pp. 55–136
[4] M.J. Ablowitz, H. Segur, "Solitons and inverse scattering transform" , SIAM (1981)
[5] F. Calogero, "Spectral transform and solitons" , 1 , North-Holland (1982)
[6] L.D. Faddeev, L.A. Takhtadzhyan, "Hamiltonian methods in the theory of solitons" , Springer (1987) (Translated from Russian)

Comments

The term "soliton" was coined by C.S. Gardner, J.M. Greene, M.D. Kruskal, and R.M. Miura [a3], the originators of the inverse scattering method, to describe solitary wave solutions of the KdV equation (Korteweg–de Vries equation) with particle-like behaviour in the sense that when two of these meet, travelling at different velocities, then, after some confused interaction pattern, both, after having passed through each other, emerge unchanged in form and velocity (but there is a phase shift).

There are fundamental connections between the boundary value problems of analytic function theory and soliton equations. One such connection is provided by the so-called Zakharov–Shabat dressing method [a5], cf. also [a4], [a6], which associates a new solution (a "dressed-up" solution) to a solution of a family of Riemann–Hilbert boundary value problems defined by an old solution (which can be trivial).

References

[a1] A.C. Newell, "Solitons in mathematics and physics" , SIAM (1985) Zbl 0565.35003
[a2] M. Toda, "Nonlinear waves and solitons" , Kluwer (1989)
[a3] C.S. Gardner, J.M. Greene, M.D. Kruskal, R.M. Miura, "Method for solving the Korteweg–de Vries equation" Phys. Rev. Lett. , 19 (1967) pp. 1095–1097
[a4] V.E. Zakharov, S.V. Manakov, "Soliton theory" Soviet Sci. Rev. Sect. A: Phys. Rev. , 1 (1979) pp. 133–190
[a5] V.E. Zakharov, A.B. Shabat, "Integration of the nonlinear equations of mathematical physics by the method of the inverse scattering problem II" Funct. Anal. Appl. , 13: 3 (1979) pp. 166–174 Funkts. Anal. i Prilozh. , 13: 3 (1979) pp. 13–22
[a6] C. Rebbi (ed.) G. Soliani (ed.) , Solitons and particles , World Sci. (1984)
[a7] S. Novikov, S.V. Manakov, L.P. Pitaevskii, V.E. Zakharov, "Theory of solitons" , Plenum (1984) (Translated from Russian)
[a8] D.V. Chudnovsky (ed.) G. Chudnovsky (ed.) , The Riemann problem, complete integrability and arithmetic applications , Lect. notes in math. , 925 , Springer (1982)
[a9] R.K. Dodd, J.C. Eilbeck, J.D. Gibbon, H.C. Morris, "Solitons and nonlinear wave equations" , Acad. Press (1982)
[a10] A.S. Davydov, "Solitons in molecular systems" , Kluwer (1991) (Translated from Russian)
[a11] V.G. Makhankov, "Soliton phenomenology" , Kluwer (1991) (Translated from Russian)

How to Cite This Entry:
Soliton. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Soliton&oldid=54220

This article was adapted from an original article by P.P. Kulish (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article

Soliton - Encyclopedia of Mathematics (2024)

References

Top Articles
Behind-the-Scenes: Making of the "Back to the Future" DeLorean time machine
Hisense Air Conditioner Review: Stay Cool With High Tech and Low Temps
What Is Single Sign-on (SSO)? Meaning and How It Works? | Fortinet
Craigslist Free En Dallas Tx
Tyson Employee Paperless
Is pickleball Betts' next conquest? 'That's my jam'
You can put a price tag on the value of a personal finance education: $100,000
Anki Fsrs
Slag bij Plataeae tussen de Grieken en de Perzen
Johnston v. State, 2023 MT 20
Daily Voice Tarrytown
Harem In Another World F95
Inside the life of 17-year-old Charli D'Amelio, the most popular TikTok star in the world who now has her own TV show and clothing line
zom 100 mangadex - WebNovel
Never Give Up Quotes to Keep You Going
Jordan Poyer Wiki
Silky Jet Water Flosser
4Oxfun
Costco Jobs San Diego
Vera Bradley Factory Outlet Sunbury Products
Angel Haynes Dropbox
Rainfall Map Oklahoma
Cavanaugh Photography Coupon Code
The Bold and the Beautiful
Shauna's Art Studio Laurel Mississippi
The Rise of "t33n leaks": Understanding the Impact and Implications - The Digital Weekly
Angela Muto Ronnie's Mom
Www Violationinfo Com Login New Orleans
Waffle House Gift Card Cvs
Kgirls Seattle
Sephora Planet Hollywood
Telegram update adds quote formatting and new linking options
Cl Bellingham
Blasphemous Painting Puzzle
Ise-Vm-K9 Eol
Gun Mayhem Watchdocumentaries
Three V Plymouth
Despacito Justin Bieber Lyrics
Busted Newspaper Mcpherson Kansas
boston furniture "patio" - craigslist
Fedex Passport Locations Near Me
Garland County Mugshots Today
Bekkenpijn: oorzaken en symptomen van pijn in het bekken
BCLJ July 19 2019 HTML Shawn Day Andrea Day Butler Pa Divorce
Enr 2100
The Complete Uber Eats Delivery Driver Guide:
Aznchikz
Oefenpakket & Hoorcolleges Diagnostiek | WorldSupporter
Rick And Morty Soap2Day
Besoldungstabellen | Niedersächsisches Landesamt für Bezüge und Versorgung (NLBV)
Festival Gas Rewards Log In
Sunset On November 5 2023
Latest Posts
Article information

Author: Errol Quitzon

Last Updated:

Views: 5823

Rating: 4.9 / 5 (59 voted)

Reviews: 90% of readers found this page helpful

Author information

Name: Errol Quitzon

Birthday: 1993-04-02

Address: 70604 Haley Lane, Port Weldonside, TN 99233-0942

Phone: +9665282866296

Job: Product Retail Agent

Hobby: Computer programming, Horseback riding, Hooping, Dance, Ice skating, Backpacking, Rafting

Introduction: My name is Errol Quitzon, I am a fair, cute, fancy, clean, attractive, sparkling, kind person who loves writing and wants to share my knowledge and understanding with you.